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[I’he Transition State in Chemical .Reactions. 
Opening Contribution to a Discussion on the l‘ransition State in Reaction Kinetics, held by 

the Chemical Society on February 4th, 1937. 

By MICHAEL POLANYI. 
IN the time following the announcement of Bohr’s theory there was an inclination to think 
of reactions as “ quantum jumps ” and to seek the origin of chemical inertia in restrictions 
which cause certain electronic transitions to be “ forbidden.” The catalytic decomposition 
of ozone, for example, was compared with the breakdown of metastable atomic states, 
such as parhelium, caused by collisions with a wall. 

Theory to-day has returned to the older view that chemical reactions consist mainly in 
a rearrangement of atoms. A comparison 
between the arrangement of the atoms of ozone and oxygen in the condensed state shows 
us that the change consists in a rearrangement of oxygen atoms from one pattern into 
another (Fig. 1).  And the same is true for all chemical reactions: they are not mere 
changes in electronic states, but generally consist in the breaking up of one molecular 
grouping and the formation of another in its stead. The causes of chemical inertia must, 
therefore, be sought in forces which bar the path of atoms trying to break away from old 
iiiolecules to form new ones. It is the transitions between the old and the new grouping 
that we will have to consider if we wish to discover the principles of reactivity. 

Let us examine the decomposition of ozone into oxygen from this point of view. In 
ozone we see three bonds linking each molecule, and gaps separating the molecules from 
one another. In  oxygen we have pairs of atoms separated by gaps from other pairs. In  
both cases the difference between the larger atomic distances, which I have called gaps, 
and the smaller atomic distances, which correspond to  bonds, is well marked. This 
distinction is characteristic of all definite chemical states. 

To rearrange ozone into oxygen, bonds will have to be strained and ultimately severed 
by gaps. It follows that half-way between ozone and oxygen the distinction between 
bond-distances and gap-distances will be effaced. This geometrical feature of the transition 
slate can be demonstrated on a pair of ozone inolecules decomposing into oxygen. The 
colliding ozone molecules approach each other to a distance corresponding to the gaps 

Take, for example, the decomposition of ozone. 

FIG. 2. 
Decomposition of ozone (crude picture) .  
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in liquid ozone. Suppose that they are disposed to e a d  other as shown in Fig. 2a ;  then 
the decomposition will occur by one atom breaking off from each ozone molecule and joining 
up to form an oxygen molecule. Fig. 2c shows the completed reaction, and Fig. 2b the 
transition state. In  this state the separation of the atoms which have gone half-way to 
form a new oxygen molecule is anomalous and the distances separating these two atoms from 
the others are also anomalous : they are all larger than normal bonds and smaller than 
normal gaps. 
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This transition state can be formed by starting either from a pair of ozone molecules or 

from three oxygen molecules. In either case we must start by straining the bonds 
initially present ; so from which ever side the transition state is approached, its formation 
involves expenditure of work. It follows that the reaction on its way through the 
transition state is accompanied by an initial rise and a subsequent fall of the potential 
energy; the two chemical states are separated by an energy barrier as shown in Fig. 3. 
We can now redefine the transition state more precisely by identifying it with the con- 
figuration which corresponds to the top of the energy barrier. 

The height of the energy barrier q1 counted from the initial state is the energy required 
to  overcome the chemical inertia. This energy must be present in a collision to make 
it successful; it is approximately equal to the activation energy measured from the 
logarithmic temperature coefficient of the velocity constant k,, i.e., q1 = RT2. d log KJdT. 

Our ideas of the transition state have acquired precision since London (Sommerfeld 
Festschrift, Leipzig, 1928; 2. EZektrochem., 1929, 35, 552) showed that the energy of a 
system composed of three or four univalent atoms can be defined for any configuration if 
the bonds which each separate pair of a t o m  can form with one another are fully known. 
London’s method has been used for calculations of the energy and configuration of the 

E is the distance between the two oxygen atoms 
which change their position in Fig. 2. All reac- 
tions have such a “ reaction co-ordinate ” I ,  which 
describes the reaction path. The symbol E is used 
later in this general sense. 

Curve a = energy of 4 strained ozone bonds. 
Curve b = energy of 1 strained oxygen bond. 

transition state by Eyring and Polanyi (2. physikal. Chem., 1931, B, 12,279), but, although 
the results have proved illuminating in a general way, their value is restricted by the fact 
that it is difficult to judge the errors caused by the mathematical approximation involved 
in the theory. 

Fortunately, it is possible in many cases to calculate the energy and configuration of 
the transition state by means of another method, which is based on very simple 
assumptions. This method, suggested by Ogg and Polanyi (Tram. Faraday SOC., 1935, 
31, 604), is applicable to reactions in which ions are formed or which are accompanied by 
other fundamental changes in electronic structure (Evans and Polanyi, ibid., 1936, 32, 
1333) such as, e.g., the change of bivalent into quadrivalent carbon. 

The method can be demonstrated for the decomposition of ozone (without prejudice 
to the question whether it is truly applicable in this particular case) as follows : Starting 
from two ozone molecules in the configuration in Fig. 2a,  we imagine the two oxygen atoms 
which lie on the horizontal axis displaced symmetrically in the direction of their position 
in Fig. 2c. We plot the consequent rise in energy while assuming that there is no inter- 
action between the two oxygen atoms, and thus obtain the energy curve of the four strained 
ozone bonds (Fig. 4, curve a).  Next, we start from the other side of the reaction, that is, from 
three oxygen molecules situated as in Fig. 2c, and pull the above two oxygen atoms apart 
towards their position in Fig. 2a. We again plot the rising energy, which will be merely 
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that of a strained oxygen molecule if we disregard all i?tteyaction betwezrt the two dispZaced 
atoms and the pair of oxygen molecdes flanking them on both sides. Thus we obtain curve b 
in Fig. 4. The reaction will occur at the point where the two curves cross; hence the 
energy and configuration at the crossing point can be identified with that of the transition 
state. It is true that, strictly speaking, the energy of the transition state is always lower 
than that given by the crossing point, since, on account of the quantum-mechanical 
“ degeneracy ” of this state the crossing point is cut off as shown by the dotted line in the 
diagram. An exact calculation of the “ perturbation energy ” which causes this 
depression would lead to the same solution as that proposed by London. The perturb- 
ation energy, however, is small, and can be neglected in reactions involving a fundamental 
rearrangement of the electrons ; herein lies the practical justification of the method. 

However, the main value of this treatment of chemical mechanism does not, perhaps, 
lie at present in its power to predict activation energies, but rather in the fact that it 
gives a clear picture of the transition state which leads t o  an understanding of various 
regularities of reactivity and, in particular, to a theoretical parallelism between variations 
of velocity constants and equilibrium constants. 

Considering an equilibrium between ozone and oxygen, we would see the atoms passing 
back and forth between the configurations of Fig. 2a and c, passing on each occasion 
through the transition state, Fig. 2b. The transition state, which we will now call T,  

thus takes part in the equilibrium, and we can apply to the “ population ” of r (Le., the 
number of systems per unit volume which have configurations represented by T )  the 
fundamental considerations of statistics : 

Population (7) = birth-rate (T) x average life (7). 

Now T is formed either when a pair of ozone molecules decompose, i.e., “ reaction 1 ” 
occurs, or when ozone is formed from oxygen by the converse “ reaction 2.” Birth-rate (7) 
is, therefore, the sum of reactions 1 and 2 per unit of time. At equilibrium the numbers 
of reactions 1 and 2 are equal, and hence 

population (7) 
average life (7) 

reaction rate 1 = 8 

Since T corresponds only to a single point on the co-ordinate I ,  the population and average 
life of r are both infinitesimal quantities. Pelzer and Wigner (2. Physikal. Chem., 1932, 
B, 15, 445), who first suggested such a statistical discussion of the transition state in a 
theory of the reaction H + HZPara = H, + H, have shown that 

population (7) = c’c’’e-@IRTy31 . dZ 
where c’ and c” are the concentrations of the two reactants, q1 is the activation energy, 
and dl a probability factor which can be determined from the configuration and the 
elastic properties of the transition state. Wigner also pointed out that the average life (7) 

is simply a thermal velocity divided by the infinitesimal length dZ, i.e., average life (7) = 
v/dZ. The velocity constant kl was thus obtained : 

k 1- - l - d R T  26 41 v . . . . . . . (1) 
The novel feature of this expression is the appearance of ++lv as a temperature-independent 
factor, i.e., representing encounter number x steric factor. This is here derived from 
the configuration and elastic properties of the transition state. This magnitude, which we 
will briefly call the “ collision factor,” was calculated by Pelzer and Wigner (Zoc. cit.) for 
the reaction H + HZPara = H, + H. was given its general form by 
Eyring (J .  Chem. Physics, 1935, 3, 107) and by Evans and Polanyi (Trans. Faraday Soc., 
1935, 31, 875). Eyring (J.  Amer. Chem. SOC., 1935,57, 985) used it successfully to calculate 
the collision factor for 2NU + 0, = ZNO,. 

More general conclusions can be obtained by introducing thermodynamic variables into 
equation (1). We define (Evans and Polanyi, Zoc. cit. ; Wynne- Jones and Eyring, J .  Chem. 
Physics, 1935, 3, 492, suggest a similar expression) an infinitesimal equilibrium constant 

Later, the factor 
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K ,  . dl which determines the population (7) as a function of the concentrations cf  and C” 
of the reactants, vix. , 

population (7) = c’c’‘KI . dl 
and, by the same process as that leading to (l), obtain 

Further, we define the free-energy difference F ,  and entropy difference S ,  by 
. . . . . . . . . . .  (2) k, = +K1v 

and . . . . . . . .  (3) 
RT log K ,  = F ,  

F ,  == - ~1 $- TS, 
Starting from the opposite direction of the reaction, we have analogous magnitudes K,, 
‘ 2 ,  ’2, and q2. 

The collkion factor $$,v now assumes the form 

. . . . . . .  (4) collision factor = &+’I%. 

We also note that the thermal velocity v can only change slightly at constant temperature, 
and we therefore set for any isothermic variable x 

and fi-on1 (2), (3), and (5) we deduce (Evans and Polanyi, Zoc. &.*) 
. . . . . . . . . .  (5) av/ax = o 

Before we proceed to apply this equation, we wish to call attention to  the Pact that the 
statistical discussion of the transition state implies a further revision of our ideas con- 

A change in equilibrium constant A log K can 
be made up in three ways by the changes in 
velocity constant A log k ,  and A log h,. A similar 
classification holds for changes in heat AQ = 
Aq, - Aq, and changes in entropy A S  = AS, - 
AS,. The case c (and c‘) is of particular 
significance. 

cerning its nature. The postulate that the 
transition state is only formed when a 
reaction occurs in either the forward or the 
backward direction implies that this state is 
the point of the reaction path having a 
minimum statistical probability. This point 
may not exactly coincide with the maximum 
of potential energy but corresponds to the 
maximum of the free energy. 

The purpose of introducing thermo- 
dynamic variables relating to the transition 
state is to deal more easily with relation- 
ships between changes in equilibrium and 
changes in reaction rate. An equilibrium 
constant K is defined by the reaction velocity 
const ants 

log K log k ,  - log k,  
When K varies from one reaction to another, 
e g . ,  under the influence of chemical sub- 
stitution, or by a change of solvent, or else 
by a continuous factor such as hydrostatic 
pressure, then three alternatives are possible 
which are shown in Fig. 5, A log K being the 
logarithmic change in equilibrium constant. 
The constituent A log k ,  and A log k2 terms 
might behave as in a or as in b or as in c. A 

similar classification is possible for changes in reaction heat AQ = Aql - Apz and in entropy 
AS = AS, - AS,. I t  has been found that many series of reactions behave according t o  
c (or c’), which is due, as we shall presently see, to the fact that significant parameters of 

* The subsequent section of this paper is taken from the work of these authors. 
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the transition state have values lying somewhere between those for the initial and the final 
state of the reaction. The thermodynamic variables of the transition state permit us to 
define these parameters and to describe simply this interesting class of reaction. 

Take, for example, reactions of the type A + B = AB, which might be the union of 
two atoms to  form a molecule, or alternatively, the addition of two complex particles, 
e.g., 2CPh, = (CPh,),. In both cases the configuration of the transition state might be 
expected to be intermediate between those of the initial and the final state and to lie close 
to the final state. The entropy of the transition state will, therefore, vary from one reaction 
oi this type to another almost exactly as the entropy of the over-all reaction. In fact, a. 
theoretical calciilation vields 

where V, the frequency of the bond A-B, and m*, a compound mass, do not vary greatly 
from one reaction to another. Since, at the same time, S varies a great deal from one 
reaction to another, it follows that changes in S will be accompanied by almost equal 
changes in S,. Such reactions are thus of the type c' with respect to variation of entropy. 

The changes in S consist in a decrease with increasing complexity of A and B. Thus the 
reaction BCPh, = (CPh& has a much smaller S than the union of two atoms, This 
obviously arises from the fact that two complex particles have to be linked up in a very 
particular way which makes AB an improbable state. The decrease in S, which accompanies 
the decrease in S explains the " slow reactions " of Moelwyn-Hughes and Hinshelwood 
(J., 1932, 230) in which the collision factor &eSIIRTv [see equation (4) J has exceptionally 
small values. In fact, a number of " slow" reactions (and perhaps all of them) are 
additions of the type A + B = AB, in which A and B have complex structures. 

We can also compare by this method the collision factor in solutions with that in the 
gas phase. For example, in the reaction C,H, + H, = C,H,, if its entropy in the gas 
phase is S,  then its entropy in solution, S*, will be S* = S + suaH, + sHs - sCnEF6, where 
saBHa, sHBJ and are the entropies of solution of ethylene, hydrogen, and ethane 
respectively. On introducing the measured data, e.g., for carbon tetrachloride solution 
(Horiuti, %. Elektrochem., 1933, 39, 22), it follows that S* is greater than S by about 7-4 
entropy units. Applying the same line of reasoning as  before, we might assume that S ,  - S 
is unchanged by the presence of the solvent, and hence that S, increases by the amount 
S* - S. The corresponding change in the collision factor #e-S1'RTv is a 30-fold increase 
as compared with the gas state. The presence of the solvent can thus increase the a eriori 
probability of the reaction, i.e., quite apart from any change in activation energy. The 
kinetic interpretation of this effect is to be found in the work done by the internal pressure 
of the solvent which helps the coalescence of two particles into one. 

Considering that the formation of the transition state from two reacting molecules is a 
process similar to an addition A + B = AB, we might generalise this result as follows : 
The collision factor in solution as compared with the gas phase is determined by the sum 
sA + .sF - s,, where sA, sB, and sr are the entropies of solution of the reactants and the 
transition state respectively. If the sum sA + sB - s, has a positive value, as was the case 
for sOaH?, sHS, and the collision factor in solution will be greater than in the gas phase.$ 
This might offer an explanation for numerous cases in which it has been found that the 
collision factor in solution is higher than the number of collisions which would occur 
between the reactants if they were present as gases. 

In general, the collision factor in solution can be determined by the entropy of solution 
of the transition state. Attention has been recently drawn to the fact that entropies of 
solution of one solute in many solvents decrease linearly with the heat of solution ; the same 
relation holds for some series of different solutes in the same solvent. Assuming that the 
latter relation holds true, at least approximately, for the reacting molecules and the transi- 

t This is equivalent to  the assumption made by Polanyi and Wigner (2. physikal. Chem., 1928, 
A ,  139, 439), as pointed out  by Evans and Polanyi (Zoc. ci t . ) .  

$ This result has also been obtained in a somewhat different manner by Wynne- Jones and Eyring 
(ZOC. c i t . ) .  
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tion state of their reaction, one would expect the collision factor to decrease with decreasing 
activation energy when a reaction is carried out in different solvents. This feature is, 
indeed, well marked in the influence of solvents on the rate of formation of quaternary 
amines from tertiary amines and alkyl halides (see data given by Moelwyn-Hughes and 
Sherman, J., 1936, 101). 

The electrolytic evolution of hydrogen is a reaction in which both equilibrium and 
reaction rate vary together under the effect of an outside force, namely, polarisation. The 
relation between these two variations follows Tafel’s over-voltage equation, which can be 
shown to express the fact that the reaction is of the type c with respect to log K. Tafel’s 
equation can, accordingly, be deduced by assuming that the strength with which the 
electric field acts on the transition state lies intermediate between the strengths of its action 
on the initial and the final state. 

Suppose that we consider electrodes at which the rate-determining step in the discharge 
of hydrogen consists in the transfer of a proton from an oxonium ion to a metal surface 
where its charge is neutralised by union with an electron, then the free energy F of this 
process depends on the polarisation E as does the free energy of the hydrogen electrode : 
aF/& = nA, where n = 1 is the number of electric charges carried by a proton, and A 
is Faraday’s equivalent. Assuming that the effective charge n of the proton in the 
transition state has a value intermediate between 1 and 0 (which values correspond to 
the initial and the final state), we obtain 

which by use of equation (6) immediately leads to Tafel’s equation 

if we measure the velocity constant by the intensity of the current.* 
Other proton transfers, occurring in acid-base catalysis AH 4- B = A- + +HB (A = 

acid ; B = base), can be treated in a similar fashion, resulting in Br~nsted’s equation, which 
correlates dissociation constants with velocity constants. On the assumption that the 
variations of the free energy from one acid to another and from one base to another arise 
purely from variations in the intensity of the molecule’s electric field, the derivation would 
be exactly the same as that of Tafel’s equation. But it seems more appropriate to leave 
the exact nature of the parameter which causes the variations in the dissociation constants 
open, and, denoting this unknown parameter by x, to  define another parameter as the 
derivative of the free energy with respect t.0 x, denoting it by @, and Pz for the initial and 
the final state respectively : 

Bramsted’s equation then results if 

has a value about half-way between P1 and p2, i.e., 

This gives aF,/aF = a, and hence, from equations (2) and (3), 

which is Brmsted’s equation if a - 0.5. 
Clearly, this framework is appropriate to express also the other numerous cases of 

logarithmic proportionality between the constants of equilibrium and velocity preliminary 
to a detailed analysis of the relevant parameters x and @.- 

Another promising field for these considerations is the influence of hydrostatic pressure 
z on reaction rate in solutions. According to van’t Hoff, W / a x  = V ,  - Vz,  V ,  and Vz 
being the volumes of moIar solutions of the reactants in the initial and the final state. 

* This derivation of Tafel’s equation becomes identical with the derivation given by Horiuti and 
Polanyi ( A d a  Physicochim. U.S.S.R., 1936, 2, 607) if we assume F ,  = q , ,  which corresponds to the 
earlier definition of the transition state as being the maximum of potential energy (see above). 

aF,/& = anA; 0 < u < 1 

log i = unAc/RT + const. 

w a x  = PI - Pz 

w a x  = P 

aF,/ax = u(pl - p2), where a - 0-5. 

log k, = 01 log K + const. 
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Assuming, as before, that for reactions of the type A + B = AB the configuration of the 
transition state is intermediate between those of the initial and the final state and nearly 
the same as that of the latter, we might expect to have 

wyaTc = .(v, - v,) 

a log kl/ax = .(v, - V,)/RT 
where 0 < cc < 1, and a is near to unity, resulting [equation ( S ) ]  in 

and for the reverse reaction 

The union of two particles to one molecule being generally accompanied by a reduction in 
volume, V ,  - V z  should be positive, and hence the association should be accelerated and 
the dissociation impeded by hydrostatic pressure. The acceleration should be almost but 
not quite as large as the accompanying shift of the equilibrium, the difference between 
the two being equal to retardation in the rate of dissociation. This prediction has been 
fully confirmed by Perrin, Gibson, and Williams (Proc. Roy. SOC., 1936, A ,  154, 684) for 
the reaction benzylmethylaniline + ally1 bromide = phenylbenzylmethylallylammonium 
bromide. Thus it appears that the direction in the change in reaction rate caused by 
hydrostatic pressure can be predicted for reactions of the type A + B = AB, and the 
magnitude of the change can also be foretold closely enough from the densities of the 
initial and the final solutions. 

One might try to go one step further by considering all bimolecular reactions as 
association reactions primarily leading to the fusion of the reacting molecules into a 
transition state. One might expect , therefore, all bimolecular reactions to be accelerated 
by pressure. It is true that this is confirmed by experience, so far. Nevertheless, this 
consideration can hold strictly, and can be formulated quantitatively, only if A and B 
unite to the transition state (AB) without any change in the solvation forces and changes 
in the density of the solution arising from this cause. Thus, predictions appear to be safe 
enough so long as no ions are involved in the reaction, but otherwise the theoretical 
analysis is more complex. 
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